




FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 3 
 

FaceySpacey Bible - The No Bullshit Bible: Creating Web 2.0 Startups & Programming 
 
TABLE OF CONTENTS 
 
Non-Technical 
 
Chapter 9 
 
PROCESS  .......................................................................................................................................................................... 2 

 
Development Tools 
1. Version control (Mercurial) ................................................................................................................................................... 4
2. IDEs (Netbeans) ................................................................................................................................................................. 9
3. Project management software (Fogbugz)  ............................................................................................................................. 11
 
Testing 
4. Debugging (Xdebug)  .......................................................................................................................................................... 13 
5. Unit testing (using Yii tools) ................................................................................................................................................. 16

 
Tech Concepts 
6. APIs  ................................................................................................................................................................................. 18
 

Conclusion & Further Reading  ................................................................................................................................ 23
  

  

  



FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 4 
 

9-1 PROCESS DEVELOPMENT TOOLS | VERSION CONTROL 
(Mercurial) 
 
So if you’ve read the Server Setup tutorials, you’ve heard me mention “version control.” 

Version control has typically been called a “time machine” to look at your code. What 

that means is you can look at your code at any moment time as it has been developed. 

You can do things like revert back in time to what your code looked like at a previous 

point in time, i.e. “roll back” your code to how it was last week. Or, just look at what 

your code was a while ago before you altered it. It serves the purpose of giving you 

confidence to do things like delete and replace old code with new and better solutions. 

So in the case that the new code isn’t quite right, you can go back and look at how it 

was before. It also greatly aids multi-developer teams. It allows each developer to work 

with an unchanging set of code. So that means if another developer changes 

something, it won’t break your code. However, there will be a time when you have to 

merge your code with the code of other developers. What this does is define a clear 

cycle of coding without worrying about changes, and then merging with everyone else. 

When you merge, your version control system will try to do it automatically, but if there 

are conflicts it will compare your code with the code of other developers and allow you 

to make edits so that you don’t break each other’s code. That’s the idea. 

 

http://www.faceyspacey.com/resources/linux/server-setup-1-setting-up-lamp-and-amazon-web-services�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 5 
 

The most popular version control systems these days are SVN, Git and Mercurial. We, 

at FaceySpacey, use Mercurial. SVN is a little older. Git and Mercurial are very 

comparable. They allow for what’s called “distributed version control.” I won’t go into 

what that means too much right now, but I will say that Git has been compared to 

the MacGyver of version control and Mercurial to the James Bond of version control. 

What that means is Git has more features (and therefore more to learn and figure out), 

whereas Mercurial has less features but is easier to get up and running with. The 

features it does have are very precise and solve what it is you will actually need most 

of the time really well. The reason we use Mercurial is because it integrates nicely with 

our bugtracker, Fogbugz. Fogbugz’s makers, Fogcreek, has a complementary product 

called “Kiln” which works in conjunction with Fogbugz. Basically it allows you to 

associate committed code to fixed bugs and completed tasks/features within Fogbugz. 

 

So here’s how we use Mercurial. 

1) Signup for Kiln here: 

http://www.fogcreek.com/kiln/ 

They have a free startup version for 2 developers. Once you create your account, you’ll 

be directed to create your first repository. Create it. Some directions will be provided 

about how to “push” your code to this storage space on Kiln’s servers for your code. 

2) Those directions will look like the following basically. At the command line navigate 

to your code and execute the following commands: 

http://www.fogcreek.com/fogbugz�
http://www.fogcreek.com/kiln�
http://www.fogcreek.com/kiln/�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 6 
 

# cd /var/www/yoursite.com/ 

# hg init 

# hg add 

# hg commit 

# hg push https://yoursite.kilnhg.com/repo/project-name/Group/repo-name 

 

That will take the code on your server (or your local host if that’s where your’re 

working) and send the code to your storage space (i.e. respository) on Kiln’s servers. 

In essence, Kiln will keep a back up of all your code--and of course with all the “time 

machine” magic previously talked about. In other words, it will store snapshots of your 

code at all points in time--well, specifically, after all commits. A commit is made every 

time you type “hg commit” at the command line while within your application directory. 

If you type “hg commit -m ‘some notes’” you can leave some notes about the recent 

changes you made, and then you can easily see what code is being commited within 

the Kiln web interface. 

The next thing to note is that in the file, /var/www/yoursite.com/.hg/hgrc, you can 

permanently enter your Kiln login credentials so that with every commit and push to the 

Kiln server you don’t have to enter the login credentials again: 

https://yoursite.kilnhg.com/repo/project-name/Group/repo-name�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 7 
 

[paths] 

default = https://yoursite.kilnhg.com/repo/project-name/Group/repo-name 

[auth] 

kiln.prefix=https://yoursite.kilnhg.com/repo/project-name/Group/repo-name 

kiln.username=your-kiln@email-address.com 

kiln.password=yourpassword 

[ui] 

username= your-kiln@email-address.com 

password=yourpassword 

The /.hg folder fyi may be hidden, so make sure to unhide your hidden files while in 

your root application directory to see it. 

The last thing to do is to navigate to another hidden 

file /var/www/yoursite.com/.hgignore and add the following lines (create this file if it 

does not exist already): 

syntax: glob 

runtime/** 

assets/** 

Those lines will make it so you don’t commit code that is unique to each computer that 

has the code on it. You may end up having an /uploads folder in your root application 

directory. If my app has functionality for users to do things like upload photos, i’ll make 

it so those large images are also not committed and pushed. Photos are big files and 

will make it so your commits/pushes take a long time, and won’t be needed on the 

computers/servers of other developers since they’ll have their own. 

https://yoursite.kilnhg.com/repo/project-name/Group/repo-name�
https://yoursite.kilnhg.com/repo/project-name/Group/repo-name�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 8 
 

So that’s basically it. One of the biggest benefits of doing this is you don’t need to 

worry about losing all your code if your server goes down. All you’re going to have to 

remember really after it’s installed is to type “hg commit -m ‘some message’” after you 

write new code, and “hg push” to push it to the central repository. And then “hg pull” 

and “hg update” which you run to pull in code commits other developers pushed to the 

main Kiln repository. You’ll also at times have to type “hg merge” but the beauty of 

mercurial is that when you run any one of these commands, if there is a problem, 

Mercurial will let you know at the command line and suggest other commands such as 

the “hg merge” one that you should execute. 

Let me summarize the common flow: 

PUSHING YOUR NEW CODE OUT: 

# hg commit 
# hg push 

PULLING OTHER DEVELOPERS’ CODE IN: 

# hg pull 
# hg merge 
# hg update 

That’s basically all you need to get productive quickly. When you get serious about 

using Mercurial, read the following longer tutorial by the Joel Spolsky, the creator of 

Fogbugz and Kiln (as well as Stackoverflow). He’s a prolific software developer that got 

his reputation from his work at Microsoft, specifically on the Excel project. Joel 

Spolsky’s the man. Research/google him. 

http://hginit.com/ 

 

http://hginit.com/�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 9 
 

9-2 PROCESS DEVELOPMENT TOOLS | IDEs (Netbeans) 
 

When learning about coding and how to code, one of your initial questions will be 

simply: “Where do I do my coding?” The reality is you can do it in a basic text editor 

like Notepad on windows, or Gedit on Linux, etc. However, there are many 

applications, IDEs (Interactive Development Environments), that provide a bunch of 

extra functionality to make coding easier. Here’s a list of basically all the PHP IDEs: 

http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#PH

P 

Our recommendation is Netbeans. Why? Well it’s the one I’ve found to be most 

popular among Yii developers, plus I’ve tried them all and compared all their features 

blow for blow, and I found it to be the beast. It has built-in Mercurial support, support 

for debugging with Xdebug (which we’ll cover in another tutorial, great code completion 

support, refactoring tools and more. 

 

You can download it here: http://netbeans.org/ . Well, here’s the download page 

(download the PHP version obviously): 

http://netbeans.org/downloads/index.html 

Netbeans is open source. It has many plugins to augment its functionality, and its well-

maintained with constant improvements. 

http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#PHP�
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#PHP�
http://netbeans.org/�
http://netbeans.org/downloads/index.html�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 10 
 

This is going to be a short tutorial, and it’s more of a recommendation. But I will share 

the main things to expect from Netbeans (and most IDEs): 

1) Code Completion - what this will do is display menus as you type code to help you complete your 
code, i.e. offering hints of what you might type next. When coding, it’s not about remembering every 
function or method, etc, that you may type. It’s about generally knowing what you’re doing. With the 
internet at your fingertips, it’s all about looking up a solution you know exists (perhaps by reading 
these tutorials) or even a solution you previously used to remind yourself. Similarly with code 
completion, you’re given the names of possible solutions based on what you’re typing. The solutions 
will generally come from the Yii framework powering your application (or your own code). The idea is 
that the IDE is knowledgeable about all the methods, properties, etc that lie deep within the Yii library 
code. So you don’t have to worry about remembering it all. 

2) Code Hiding - you can expand/collapse blocks of code that you’re not currently working with to 
make it easier to focus on what you are working with. 

3) Code Navigation - Netbeans provides lists of all the methods and properties in your current PHP 
class, so you can navigate around the code by browsing a simple list of the main (hopefully 
informationally named) methods/properties/etc. 

4) Refactoring - you can do things like change the name of a method everywhere it is used in your 
code by changing its name in one place. And more. The general idea behind refactoring is that you 
often come up with more concise ways to code solutions after you’ve already developed a partial 
solution. Netbeans makes it easy to globally make a change across all your code. 

5) Debugging - Debuggin is the process of executing your code in your web browser while your IDE 
“steps” through the code. That means you can visit your website, and then watch basically an arrow 
point to each part of the code as it’s executed. What happens is your browser hangs on a white 
screen, while you watch the sequence of your code execute step by step. This is required tool for all 
FaceySpacey developers. It allows you to pinpoint where the problem is, rather than see an error 
page in the browser and wonder where the problem is. I won’t go to deep into debugging right now, 
but just imagine yourself being able to execute a script, and watch what values are being dealt with in 
just one block of code in perhaps many blocks of code in the execution without having to worry about 
those other blocks. 

6) Formatting - this is perhaps the most basic feature of any IDE, but a very important one. Netbeans 
will automatically space and tab words apart from each other in a consistent fashion so your code 
always is structured similarly and is therefore easier to read. 

7) File Browing - Netbeans makes it very easy to navigate your tree of files in your application, and 
add new files, etc. 

Netbeans offers a lot more features, but that should give you an idea of what its 

purpose is. Get it immediately, and don’t look back.  



FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 11 
 

9-3 PROCESS DEVELOPMENT TOOLS | PROJECT MANAGEMENT 
SOFTWARE (Fogbugz) 
 
There are many project management tools to choose from. They’re often called simply 

“bugtrackers.” Here’s a Wikipedia comparison list of all the tools too choose from: 

http://en.wikipedia.org/wiki/Comparison_of_project_management_software 

37signals’ Basecamp has become the poster child of such software. It’s too basic of a 

tool for real software development in our opinion. Our pick here is Fogcreek’s Fogbugz. 

Here are the main reasons: 

 

1) Custom Task/Bug Organization - Fogbugz allows you to create lists of tasks/bugs and group 

them in an almost infinite number of ways, i.e. by area, priority, tags, milestone, assignee, and many 

other criteria. However, that’s not the magic. The magic is you can have multiple “views” into your 

tasks accordion to different criteria. Fogbugz calls these “Filters.” In essence, the tasks exist in the 

system and are tagged with various criteria. Then you can build Filters that sort, group and filter the 

tasks shown according to a configuration of all that criteria. And then you can build as many of these 

filters as you want. For example, you can see just all tasks for Project ABC with priority 5+ in the 

current milestone that are past due. You can then share these filters you create with other developers 

so you know you’re all looking at the same system. 

2) Plugins - Fogbugz has a great plugin system where 3rd party developers can enhance it. One 

popular once is Kanban. Search in google images “Kanban 

chart”: http://www.google.com/search?q=kanban+chart&hl=en to see what it is. It’s basically a chart 

with several vertical columns, and then you move post-it notes that correspond to tasks across these 

columns from left to right as they get closer to true completion. So the Kanban plugin helps display 

your fogbugz tasks in a similar visual. 

http://en.wikipedia.org/wiki/Comparison_of_project_management_software�
http://www.google.com/search?q=kanban+chart&hl=en�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 12 
 

3) Integration with Mercurial - Fogbugz’s sister product (as mentioned in the Version Control 

tutorial) Kiln is deeply with Fogbugz. It allows you to associate actual committed code with completed 

(or near-completed) tasks. It also allows you to do code reviews. It’s pretty sick. 

4) Evidence-based Scheduling - Fogbugz can produce pretty graphs that estimate when 

projects/tasks/milestones will be completed based on the measured efficiency of your developers and 

what tasks they’ve already completed. It takes a lot of discipline to use this properly, as you need to 

do things like estimate how long tasks will take and mark how long they ultimately take you, but if you 

can get your developers into a groove using this, you can get great estimates of when your 

milestones will be reached. 

5) Wikis - Fogbugz has wikis that can be two-way linked between tasks. So you can produce 

documentation for your code or product and closely correlate it to your task. 

6) Email Support System - It comes with an email support system that turns any emails into tasks in 

your system automatically, and your developers can do things like respond to bugs inside of fogbugz 

just like they would any other task, and the person that reported the bug (or complain) will get an 

email. And of course that thread can continue accordingly. 

7) Forum System - It has a forum system that also interlinks with the bugtracker similar to the wiki 

system. 

8) Snapshop plugins - There are some great plugins that allow testers to take screenshots of issues 

your app is having and automatically send the screenshot (with some notes and other tagged criteria) 

to the bugtracker at the core of Fogbugz. 

9) Nested Tasks - Tasks can have sub-tasks for basically an infinite # of tiers (well, i think it’s 8 tiers). 

A lot of bug trackers only have 2 tiers of tasks, i.e. a group and a list of tasks in it. Fogbugz allows you 

to easily have child and parent tasks, and move tasks around between different parents. 

10) Quick Notation - Fogbugz has a quick way to enter tasks one after another in a quick to do list. 

This is very powerful for just banging out your task list quickly. 

The list goes on. We highly recommend it. Check out all the features here: 

http://www.fogcreek.com/fogbugz 

http://www.fogcreek.com/fogbugz�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 13 
 

Now I’m going to end this article explaining the importance of bug-tracking and project 

management software in general. The importance is simple: one of the key skills 

required of a great developer is storing many to-dos in their head at a time. But the 

reality is it’s impossible to store them all. Project management software allows 

developers to focus on doing the actual work. They’ll inevitably always find sub-tasks 

they must remember. So help them make it so those tasks they have to remember are 

very few and at a very granular level for a clear single task. For product owners (i.e. 

the non-technical participants in the project), it will give you insight into the progress of 

your developers. It’s pretty self-explanatory. The biggest takeaway is just get Fogbugz 

and don’t spend 2 weeks researching all the bugtrackers like I and many startup guys 

have done. It is sort of a right of passage to study them all for any Web 2.0 guru, but 

really, just get to coding your app and take my word for it: Fogbugz is the shit! 

 

9-4 PROCESS TESTING 1 | DEBUGGING (Xdebug) 
 

Debugging is perhaps the most important part of software development. If you’re not a 

coder yet, and you manage some coders, you may be inclined to measure their 

productivity by how many lines of code they’ve coded, but the reality is most of their 

time is spent hunting down bugs and often changing one line of code. So therefore 

tools to track down those bugs are very important. 

Debugging tools allows you to isolate the problem area and “step” through its lines of 

code to see quickly find the precise problem. You can do things like see the values of 

each variable at each line of code until you see where the value is not what it should 

be. 



FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 14 
 

 

The best and most popular tool for PHP debugging is called XDebug. You can check it 

out here:http://xdebug.org/ . 

Installing Xdebug can be quite problematic. Here’s the best tutorial I’ve found, and 

exactly what I used to install it: http://devzone.zend.com/article/2803 

The basic idea is you install the Xdebug application on your server, and then tell PHP it 

can use it by configuring you php.ini file you’ve seen edited in the Setup tutorials. 

The next thing you need to do is configure Netbeans to make use of it. Here are the 

tutorials to do so: 

http://wiki.netbeans.org/HowToConfigureXDebug 

http://netbeans.org/kb/docs/php/debugging.html 

When completely installed, which again is the hardest part, you finally get to learn the 

joys of debugging. The main idea is you can watch your script execute while the 

browser hangs and basically press pause/play buttons to step through your code line 

by line, while viewing in a window the values of all the variables in the current scope. 

You can do things like dive deeper into called functions or skip over them and just step 

through the current top level client code. You can go as many layers deep as you want 

http://xdebug.org/�
http://devzone.zend.com/article/2803�
http://wiki.netbeans.org/HowToConfigureXDebug�
http://netbeans.org/kb/docs/php/debugging.html�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 15 
 

and back out as many layers back as you want. So that means if a function or method 

is called, you can choose to step through all the lines within it, or just treat it as one line 

that you skip over and move to the next, i.e. if you deem it not to be problematic. But if 

you determine that a specific method call is where the problem is coming from, you can 

dive into it and go line by line through its code while watching the values of variables 

used within it. 

Other things you can do are create “breakpoints” which are points in the code 

sequence the debugger should stop at while it’s playing through your code. Think of 

the debugger like a music track. You can basically say at 1 minute 33 seconds pause, 

or rather at line 77 pause. And then take a quick peak at what’s going on. You can set 

several break points, and just pause/play until you reach them, without having to waste 

your time stepping through other lines you’re pretty sure are kosher. 

You can also specify “watches,” which are basically variables and properties, whose 

values you’d like to watch more closely. Xdebug within Netbeans unfortunately is a 

little buggy, or rather, is just not capable of tracking all variables. I think it’s because it 

just takes too much computing power. That’s why it allows you to specify “watches” 

that will contain the values of variables/properties you’re really interested in. 

The last really important thing it does is maintain a “call stack” for you. A call stack is 

treed outline of all the methods called and the methods they call and so on. The Yii 

framework will produce similar call stacks when your pages produce errors. The idea is 

you can track the code execution path in terms of methods called. So one method 

usually will call several methods in it, and those methods will do the same and so on. 

And if there is a problem, you’ll be looking at the last method called before the error or 

exception occurred. When you’re there you can get a list of all the previous methods 

called to get to that point. This way you can go up and down the tree looking for other 



FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 16 
 

factors that might have caused the problem, without having to examine methods that 

aren’t part of the sequence. 

Again, Debugging is very important. Without it, developers do this: they make their 

code echo the value of variables--often arrays--in their code that they think are causing 

the problem. When they do so, they stop the script from executing further. To do this 

they will enter something likevar_dump($variableName); exit; in their code to make the 

 script echo out to the browser the value contained in $variableName on to a white 

screen, and stop all else. This is problematic because you then have to remove that 

code, or comment it out, and if you comment it out, you’re left with lots of extra code 

that won’t be used when the script is in production and used on a live site. Debugging 

adds a layer of extra tools to do all this for you without cluttering up your code. Master 

it asap. If you know Javascript, a good place to start is with the debugger built into the 

Firebug plugin for Firefox since it takes no installation, and as I said before Xdebug is 

hard to install.  
 

9-5 PROCESS TESTING | UNIT TESTING (Using Yii Tools) 

 

Unit testing is the testing the of individual code blocks at a granular level. Therefore 

tools to aid this process make it very easy to isolate these blocks of interest and make 

sure they’re kosher independently from the rest of your application code. “Test Driver 

Development” is a methadology where you code tests before you even write code. For 

new developers--that these tutorials are written for--it’s really hard to get why it’s so 

important since you usually want to get to coding your features immediately. That’s 

why I won’t go too deep into it yet, but I will say that for large teams and apps already 

in production iterating into post-launch phases it’s very important. The reason is 

because you can run tests that will verify past code you’ve written still works. As you 

improve upon your app and add new features, it’s inevitable that you will break old 



FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 17 
 

code. With a proper suite of tests for your most important features, you can quickly 

generate a report that lets you know if anything broke. 

The way unit testing works is generally that you define sets of input, then the test 

passes the input to a block of code, waits for the output, and then tests that the output 

equals what you want it to equal. You have to write code to setup what the input is, and 

you have to write code to test the values of the output and if they match your 

expectations. 

Yii offers built-in testing tools (based on PHPUnit). To install them and learn how to use 

them, read these tutorials on the Yii site: 

http://www.yiiframework.com/doc/guide/1.1/en/test.overview 

http://www.yiiframework.com/doc/guide/1.1/en/test.unit 

With this birds-eye-view overview you should know when this will become important. 

To me, the biggest thing is the mindset that unit testing cultivates. It helps you imagine 

your code in parts, rather than features. It lets you visualize the motor, the steering 

wheel, etc, if we were to use a car metaphor. It helps you pin-point how each part 

should interface with other parts so that you can get a rock solid interface between sets 

of code so that less breakdowns happen. It helps you know where the problematic 

parts will be, i.e. what points of interface may be weak or strong. 

In another article I’ll cover Functional Testing, but not in this series. However, I’d like to 

point out the difference: Unit Testing is all about automating the testing of blocks of 

code, methods basically, while Functional Testing is all about automatically simulating 

a user on your site and catching any issues at the graphical user interface level. In my 

experience, doing Functional Testing is a lot more difficult to pull of and without the 

gains of Unit Testing. Functional testing is very appealing to non-technical product 

guys that don’t trust their developers--at least the overall concept is. Functional testing 

https://github.com/sebastianbergmann/phpunit/�
http://www.yiiframework.com/doc/guide/1.1/en/test.overview�
http://www.yiiframework.com/doc/guide/1.1/en/test.unit�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 18 
 

is great when your app is truly done, and you want to keep it that way as you add new 

features. It’s not as useful in the development stage and just getting to your initial 

launch, for which these tutorials are mainly written. It’s hard to prepare useful 

functional tests when your app barely works. Whereas unit testing--or especially test 

driven development where you write the tests first--is key to giving developers a 

mindset where they visualize their code in chunks. Overall, unit testing allows 

developers to really focus on their tasks and guarantee that what they’ve been 

assigned to do is as closed to perfect as possible. It requires great product specs, as 

do most aspects of software development for GUI heavy apps, so that you can also 

create great tech specs where you pin-point precise pockets of code to write. When a 

project can be broken down that granularly, unit testing does wonders by helping 

developers focus on and insure their assignments will interface with the assignments of 

other developers perfectly, or at least in the way the other developers expected.  

9-6 PROCESS TECH CONCEPTS | APIs 
An understanding of APIs is key to modern web development. The reason this tutorial 

is in the "Process" section is because building your application from an API perspective 

leads to long-lasting code that all the developers in your team can use and less throw-

away code. In this tutorial, we'll cover the use of 3rd party APIs to give you an idea of 

how you can incorporate your own to isolate separate layers of your codebase into 

clear interfaces. 

Prolific East Coast investor (from Union Square Ventures), Fred Wilson, I remember 

once mentioned in a video that he forecasts the future of the web being all about 

mashups of APIs. What that basically means it that apps will be getting data from tons 

of places (currently Facebook, Twitter, etc) and sending data back. These days you 

can build tools using other tools that are mashups. For example Twitter Feed helps you 

post to Facebook and Twitter from your RSS feeds. So basically you’re going indirectly 

through another mashup to accomplish your automated posting to the said social 



FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 19 
 

networks. That’s a basic example, but the basic idea is still the same: everyone’s 

building stuff on top of other applications, and people are building on top of that and so 

on. 

So what is an API? An API is a programmatic way to send input to another web 

application and get output back over the internet. So rather than visiting a web page in 

a URL, your application can visit special URLs that return data in consistent formats 

that your app can then interpret and use to go about its business. It’s a way for one 

app to communicate to another. This is so powerful that large soon to be public 

companies like Zynga have made billion dollar businesses using APIs of other 

companies, i.e. specifically Facebook. Zynga’s going to go public before Facebook! 

Isn’t that crazy. 

Back to what Fred Wilson was saying. He’s basically saying that an internet behind the 

scenes is emerging. It still uses the HTTP protocol like your web browser does, but its 

your app code that’s doing the communication to accomplish its own unique goals. As 

a result we have entire companies, like the new Ness (http://www.likeness.com), which 

do nothing but mine data from other sites and build an intelligence based on that 

information. Ness, for example, plans to harvest data from tons of places to build a 

minor form of artificial intelligence that will help you search and get results based on 

your tastes. A lot of guys have tried to do this to a degree, but it’s about time for this to 

get really real--because of the shear amount of data you’re putting out on Twitter, 

Facebook, iTunes, etc, about what you like. 

So how does this actually work in an actual application? Basically you write code to 

ping a URL, and in the URL you specify for example a user ID of a Facebook user, and 

you can get their information in a consistent structured format that your code can then 

parse. For example here is the basic information about one of the most famous 

Facebook engineers, Bret Taylor: 

https://docs.google.com/document/pub?id=16xGvcqg-X7_-vFZNFPbJEj77bIJIVw_V7E9yApR2Ww8�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 20 
 

 

 

{ 
  "id": "220439", 
  "name": "Bret Taylor", 
  "first_name": "Bret", 
  "last_name": "Taylor", 
  "link": "http://www.facebook.com/btaylor", 
  "username": "btaylor", 
  "gender": "male", 
  "locale": "en_US" 
} 

You can ping the Facebook API at the following endpoint URL to get that data about 

him: 

https://graph.facebook.com/btaylor 

That data happens to be public. For private data you would specify basically a 

password in the URL (that you usually have stored in your database) to get access to 

that facebook info. We’ll cover in another article Facebook authentication, but basically 

Facebook, Twitter, etc, all provide ways for end users in their browser to pass you a 

special password (“access tokens”) to gain access to their data and post 

updates/tweets on their behalf. 

Back to the structured data above. As you can see the data is presented in a 

consistent format. All users will have a gender, first_name, etc. It will all be presented 

in a similar format. Therefore you can write code to iterate over that list of data and 

grab each value by its key, i.e. you can expect to get all first names by the key, 

“first_name” and so on. That’s the idea. 

https://graph.facebook.com/btaylor�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 21 
 

When you submit data, you also get a response, e.g. that what you posted was 

successful. For example, if you’re using the Twilio API to send SMS text messages you 

will get a response like this: 

 

<TwilioResponse> 

    <SMSMessage> 
        <Sid>SM90c6fc909d8504d45ecdb3a3d5b3556e</Sid> 
        <DateCreated>Wed, 18 Aug 2010 20:01:40 +0000</DateCreated> 
        <DateUpdated>Wed, 18 Aug 2010 20:01:40 +0000</DateUpdated> 
        <DateSent/> 
        <AccountSid>AC5ef872f6da5a21de157d80997a64bd33</AccountSid> 
        <To>+14159352345</To> 
        <From>+14158141829</From> 
        <Body>Jenny please?! I love you &lt;3</Body> 
        <Status>success</Status> 
        <Direction>outbound-api</Direction> 
        <ApiVersion>2010-04-01</ApiVersion> 
        <Price/> 
<Uri>/2010-04-    
01/Accounts/AC5ef872f6da5a21de157d80997a64bd33/SMS/Messages/SM90c6fc909d8504d45ec
db3a3d5b3556e</Uri> 
</SMSMessage> 
 
</TwilioResponse> 

And as you can see the <status> node says it was successful, and your code can now 

continue as normal because it knows it executed its job of sending an SMS text 

message successfully. in the <Uri> node you receive an ID # for that SMS text 

message so you can refer to it later. You could store that in your database and request 

another API endpoint url and get back the contents of this text message, i.e. similar 

information to what you see above. Maybe you want to produce a history of all text 

messages sent through your app--so that’s why you would do that. 

That’s a quick runthrough of what APIs are about. If you plan to post tweets to twitter 

and updates to Facebook with your App, you’re going to want to understand how APIs 



FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 22 
 

work even if you’re not going to be a coder. More specifically, you need to be able to 

read API documentation, e.g. like the one Facebook provides for their “graph API”: 

http://developers.facebook.com/docs/reference/api/ 

If you can read the documentation you will know specifically what you can’t and can 

do, and can therefore better instruct your developers of what to develop. You’ll avoid 

sending them on a wild goose chase to code something Facebook won’t even allow 

you to do. I’ve seen so many failed companies spend ages thinking they can do 

something they can’t, and waste money forcing developers to figure it out on your 

dime. 

To read API documentation you need to understand 3 things: 

1) PARAMETERS - the data you provide to the URL endpoints, and what parameters are available 

and what types of values are accepted. These parameters basically configure what sort of output you 

should expect. They are the input, just like parameters to functions in PHP. 

2) RESPONSE FORMATS - above you saw 2 types of response formats: JSON and XML. That’s 

basically all you’ll need to know. It’s how the response is formatted. If you can examine these tree 

structures, you can see what sort of data you can get out of the APIs you’re using. 

3) POST vs GET - i’ve been referring to these URL endpoints as the only way to supply input 

parameters, but the reality is you can pass more parameters outside of the URL via “POST fields.” I 

won’t go into it at a deep level here, but I’ll give you the gotcha you need to know: basically you can 

attach more values and send them along with the URL you request. That’s it. So instead of having 

parameters at the end of the URL like this ?key=value&key2=value, you’ll send them in similar pairs 

but as POST fields. In PHP you’ll use a tool called cUrl to aid you in attaching these key/value pairs. 

After you understand that, you’ll be able to read the documentation of very many APIs 
very quickly. They’re all quite similar. Study Facebook’s and Twitter’s until you get the 
hang of it.  
 
 
  

http://developers.facebook.com/docs/reference/api/�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 23 
 

Conclusion & Further Reading 
 
We at FaceySpacey hope you've enjoyed our FaceySpacey Bible, and are coming 

away many times more ready to succeed at your next software startup. At the very 

least, you should have a birds-eye-view of what you need to do to get your startup, and 

have quelled a lot of insecurities you may have had regarding how you should execute 

it. That said, I will point to you to what you should do next.  

 

As promised, the following is a list of the precise books I read to master web 

development using HTML/CSS, Javascript, PHP & MySQL. They are presented in the 

best order to most efficiently learn the subject at hand. It's similar to the order I read 

them in, but enhanced based on what I learned and the order I wish I read them in. 

Good luck: 

 

HTML/CSS: 
CSS Mastery: Advanced Web Standards Solutions 
http://www.amazon.com/CSS-Mastery-Advanced-Standards-Solutions/dp/1430223979/ 

Before you start coding PHP, Javascript, etc, understand how HTML works. This is 

where you start. HTML is easy. Read this book in combination with studying the HTML 

& CSS tutorials on w3schools.  

 
PHP & MySQL: 
 
PHP & MySQL For Dummies, 4th Edition 
http://www.amazon.com/PHP-MySQL-Dummies-Janet-Valade/dp/0470527587 

This book--well an older edition--I read a year before I got serious about learning to 

code. I read it and didn't actually code anything i learned, but what it did was plant 

seeds in my head with regards to what programming is all about and what databases 

are all about, and how to connect the two. It assumes very little in what you may 

http://www.amazon.com/CSS-Mastery-Advanced-Standards-Solutions/dp/1430223979/�
http://www.amazon.com/PHP-MySQL-Dummies-Janet-Valade/dp/0470527587�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 24 
 

already know, and is an excellent start in your journey to becoming a master 

programmer.  

 

PHP Object-Oriented Solutions 
http://www.amazon.com/PHP-Object-Oriented-Solutions-David-

Powers/dp/1430210117 

This book is where I learned what OOP is. I didn't get the hang of it until reading the 

following book. Don't worry if you read this and have a hard time with it. This book and 

the next each have introductory chapters that go over how OOP works. It took me 

reading basically this book and the next book about the same stuff to get it. This book 

is a lot less complicated than the following and dives into practical examples & 

problems, whereas the next is a lot more theoretical.  

 

PHP Objects, Patterns and Practice 
http://www.amazon.com/Objects-Patterns-Practice-Experts-Source/dp/143022925X 

After reading this book, I basically mastered OOP. It's a very hard book to get through 

if you're new to OOP, and goes into some very advanced stuff, specifically tons and 

tons of "design patterns." The design patterns are presented in as basic of a form as 

possible, but they weren't very practical like examples from the previous book in that 

you probably will never actually need any of the code used in the book. Either way, this 

is my favorite Programming of all time because it taught me how to think like a coder 

and how to solve complex problems with concise refactored solutions. It really showed 

me what is possible with OOP. You don't know PHP unless you've read this book.  

 

Pro PHP: Patterns, Frameworks, Testing and More 
http://www.amazon.com/Pro-PHP-Patterns-Frameworks-Testing/dp/1590598199 

I read this book too just to solidify my experience with PHP, and cover all my bases. 

Check it out. It's optional.  

 

http://www.amazon.com/PHP-Object-Oriented-Solutions-David-Powers/dp/1430210117�
http://www.amazon.com/PHP-Object-Oriented-Solutions-David-Powers/dp/1430210117�
http://www.amazon.com/Objects-Patterns-Practice-Experts-Source/dp/143022925X�
http://www.amazon.com/Pro-PHP-Patterns-Frameworks-Testing/dp/1590598199�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 25 
 

 
PHP Functions Essential Reference 
http://www.amazon.com/Functions-Essential-Reference-Torben-

Wilson/dp/073570970X 

At some point during my study of PHP I found this book and decided just to learn every 

PHP function available so that I could better understand the examples in the above 

books. Start reading this early on, and complete the whole thing. You'll quickly learn 

patterns in how PHP functions are named, and as a result be able to guess what a 

function does within the context of the examples in the above books--even if you don't 

remember precisely what it does. 

 

Agile Web Application Development with Yii 1.1 and PHP5 
http://www.amazon.com/Agile-Web-Application-Development-PHP5/dp/1847199585 

I read this book in combination with reading the Blog Tutorial and Definitive Guide on 

YiiFramework.com. When you're done studying all these materials, you'll be amazed 

with how much power you have. This book isn't hard to read either. You'll love it if you 

reach this stage! 

 

Javascript & jQuery: 
 
Learning jQuery, Third Edition 
http://www.amazon.com/Learning-jQuery-Third-Jonathan-Chaffer/dp/1849516545 

jQuery is a framework built on top of the native browser language of Javascript. 

Usually one would recommend you learn the base language--Javascript--before 

learning an abstracted framework on top of it--jQuery. However because of the nature 

of jQuery and how comprehensive it is and because of how quirky Javascript is coming 

from PHP, I found it best to jump to jQuery and immediately start accomplishing the 

DOM manipulation tasks I needed. And ultimately because of 

syntax similarities between PHP and Javascript I was able to get productive in 

Javascript without studying a single book just on Javascript. One thing I did different 

http://www.amazon.com/Functions-Essential-Reference-Torben-Wilson/dp/073570970X�
http://www.amazon.com/Functions-Essential-Reference-Torben-Wilson/dp/073570970X�
http://www.amazon.com/Agile-Web-Application-Development-PHP5/dp/1847199585�
http://www.amazon.com/Learning-jQuery-Third-Jonathan-Chaffer/dp/1849516545�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 26 
 

when studying this book from the PHP books is I did every single tutorial as I read it. 

The reason is because when I learned PHP, I was learning my first real programming 

language--so it took me a lot of time to just digest things before I could code a single 

line, which is why I just read PHP book after PHP book before I got started until it all 

made sense. However, by the time I got to Javascript & jQuery, I understood how 

programming in general works and found it helpful for memorization purposes to 

immediately start doing the tutorials.  

 

jQuery 1.3 with PHP 
http://www.amazon.com/jQuery-1-3-PHP-Kae-Verens/dp/1847196985 

With this book I didn't do all the tutorials like I did with Learning jQuery, but what 

reading this book did for me is taught me precisely how Ajax works and what it's all 

about. After reading it, coding features that required Ajax using Yii and PHP was 

obvious and a no-brainer.  

 

JavaScript: The Good Parts 
http://www.amazon.com/JavaScript-Good-Parts-Douglas-Crockford/dp/0596517742 

This book gave me a deep understanding of the Javascript language and what it's truly 

all about. After reading it, many hours of debugging and head-scratching when coding 

Javascript & jQuery were removed from my schedule--because I finally learned the 

quirks of the Javascript language I needed to know. 

 

Pro JavaScript Design Patterns  
http://www.amazon.com/JavaScript-Design-Patterns-Recipes-Problem-

Solution/dp/159059908X 

Now this book took my Javascript game to the next level, gave me an idea of how 

jQuery was built, taught me how to do things similar to how you would in a "classical" 

OOP language like PHP, and completely ended any remaining head-scratching I was 

having with Javascript, particularly with how "scope" works in Javascript.  

http://www.amazon.com/jQuery-1-3-PHP-Kae-Verens/dp/1847196985�
http://www.amazon.com/JavaScript-Good-Parts-Douglas-Crockford/dp/0596517742�
http://www.amazon.com/JavaScript-Design-Patterns-Recipes-Problem-Solution/dp/159059908X�
http://www.amazon.com/JavaScript-Design-Patterns-Recipes-Problem-Solution/dp/159059908X�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 27 
 

 

 

Linux: 
 
The Official Ubuntu Server Book, 2nd Edition 
http://www.amazon.com/Official-Ubuntu-Server-Book-2nd/dp/0137081332 

Note: by the time I read this book I had already learned Linux through blogs on the 

internet. The best thing I can recommend you do is install Linux on your computer from 

the Ubuntu website, and start navigating around the command line, practicing Linux 

commands you learn off the web. Just google "linux tutorials" and you'll be off to a 

running start. That said, by the time I got proficient in Linux and after I read this book, I 

felt confident that I really knew what I was doing and had practical solutions for the 

most common problems you'll face at the command line.  

 

Apache Cookbook: Solutions and Examples for Apache 
Administrators 
http://www.amazon.com/Apache-Cookbook-Solutions-Examples-

Administrators/dp/0596529945 

This book I treat like a pocket reference and still refer to it often since it's impossible to 

remember all the different Apache configurations, given how comprehensive this web 

server application is. I did read it through when I first got it. I kinda skimmed it though--

just to get an idea of what is possible. Getting an idea of what is possible without 

mastering a subject matter is so important in programming because you'll know where 

to look when you face a challenge that the subject matter can solve.  

 

Pro Bash Programming 
http://www.amazon.com/Bash-Programming-Experts-Voice-Linux/dp/1430219971 

This is a little advanced for readers of the FaceySpacey Bible, but I'm putting it here 

because it really took my Linux skills to the next level.  

 

http://www.amazon.com/Official-Ubuntu-Server-Book-2nd/dp/0137081332�
http://www.amazon.com/Apache-Cookbook-Solutions-Examples-Administrators/dp/0596529945�
http://www.amazon.com/Apache-Cookbook-Solutions-Examples-Administrators/dp/0596529945�
http://www.amazon.com/Bash-Programming-Experts-Voice-Linux/dp/1430219971�


FaceySpacey  Bible: 󴀀 The No Bullshit Bible: Creating Web 2.0 Startups & Programming 󴀀PROCESS Page 28 
 

 
 
 
NON-TECHNICAL BOOKS: 
 

Smart and Gets Things Done: Joel Spolsky's Concise Guide to Finding 
the Best Technical Talent 
http://www.amazon.com/Smart-Gets-Things-Done-Technical/dp/1590598385 

If you plan to grow a small application into a large company, this book is a must. It's 

short. Read it.  

 

SEO Book.com 
http://www.seobook.com  

This obviously isn't a book, but I read their entire site like a book, and its creator, Aaron 

Wall, expects you to read it like a book. When I was done reading it, I felt I was 

completely up to speed regarding what SEO is, how search engines work, and 

practical techniques to get better rankings in search engines.  

 

 

For daily Startup Wisdom, checkout FaceySpacey.com/blog daily. And

don't forget to download the entire No Bullshit FaceySpacey Bible or 
more individual chapters here: 
http://www.faceyspacey.com/resources?section=book . 
 

Thanks again from FaceySpacey and be sure to check out FaceySpacey.com often 

for further knowledge we kick to take your Startup to the Stars! 

 

http://www.amazon.com/Smart-Gets-Things-Done-Technical/dp/1590598385�
http://www.seobook.com/�
http://www.faceyspacey.com/blog
http://www.faceyspacey.com/resources?section=book�

	The No Bullshit Bible
	Chapter 9 Process    pg. 2 

	Table Of Contents    pg. 3

	9-1    pg. 4

	9-2    pg. 9

	9-3    pg. 11

	9-4    pg. 13

	9-5    pg. 16

	9-6    pg. 18

	Conclusion    pg. 23




